Feature article from Watershed Protection Techniques. 3(2): 633-646

The Benefits of Better Site Design in Residential Subdivisions

Though they may not realize it, site planners have an excellent opportunity to reduce storm water runoff and pollutant export simply by changing the way they lay out new residential subdivisions. Planners that employ open space design techniques can collectively reduce the amount of impervious cover, increase the amount of natural land conserved, and improve the performance of stormwater treatment practices at new residential developments.

Simply put, open space designs concentrate density on one portion of a site in order to conserve open space elsewhere by relaxing lot sizes, frontages, road sections, and other subdivision geometry. While site designs that employ these techniques go by many different names, such as clustering or conservation design, they all incorporate some or all of the following better site design techniques:

- Using narrower, shorter streets and rights-of-way
- Applying smaller lots and setbacks and narrow frontages to preserve significant open space
- Reducing the amount of site area devoted to residential lawns
- Spreading stormwater runoff over pervious surfaces
- Using open channels rather than curb and gutter
- Protecting stream buffers
- Enhancing the performance of septic systems, when applicable

In this article, we examine some of the benefits of employing better site design techniques as they apply to residential subdivisions. The analysis utilizes a simple spreadsheet computer model to compare actual residential sites constructed in the 1990s using conventional design techniques with the same sites "redesigned" utilizing better site design techniques. For each development scenario, site characteristics such as total impervious and vegetative cover, infrastructure quantities, and type of stormwater management practice are estimated.

The Simplified Urban Nutrient Output Model (SUNOM) was used to perform a comparative analysis for two subdivisions that span a wide range of residential density (see Table X). The first is a large-lot subdivision known as Duck Crossing, and the second is a medium-density subdivision known as Stonehill Estates. In each case, the model was used to simulate five different development scenarios:

- Pre-developed conditions
- Conventional design without stormwater practices
- Conventional design with stormwater practices
- Open space design without stormwater practices
- Open space design with stormwater practices

This article compares the hydrology, nutrient export, and development cost for these sites under both conventional and open space design, and with and without stormwater treatment. The article also summarizes other research on the benefits of open space design and discusses the implications it can have for the watershed manager.

